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Abstract 
 
 
In this report, an overview of information fusion techniques for dependent and independent 
sources, specifically for biometric applications, is provided. The information fusion 
architecture is presented for both dependent and independent sources addressing in detail the 
various fusion techniques at four different levels namely: raw data or signal level, feature 
level, decision level and multi-level integrated fusion. Furthermore, the report addresses the 
question of whether independent biometric sources can be fused to provide multi-modal 
biometric system with enhanced performance. The report shows that even when the sources 
are independent, the performance of a multi-modal biometric system can be better than that of 
a biometric system based on single source. The performance is measured in terms of total 
false accept rate (FAR) and false rejection rate (FRR). The conditions for achieving an 
improved performance for the decision level fusion using AND, OR and majority voting are 
derived theoretically and confirmed through computer simulations. 
 

Keywords: information fusion, biometrics, dependent, independent, signal fusion, feature 
fusion, decision fusion.
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Executive summary 
 
Information fusion utilizes a combination of different sources of information, either to 
generate one representational format, or to reach a decision. Information can be from both 
dependent and independent sources. In this report, a literature review of information fusion 
techniques, in particular for biometric information fusion, is given. We classify fusion into 
two main categories: fusion of dependent sources and fusion of independent sources. Both 
categories of fusion can be carried out in four different levels: raw data level, feature level, 
decision level and multi-level integrated fusion. For the dependent sources, raw data level 
fusion is widely applied particularly in target-tracking, remote sensing image fusion, 
navigation, etc. However, it is not suitable for independent biometric sources since the 
biometric traits contain different signal formats. Feature level fusion is applicable to both 
independent and dependent sources. Developed methods include: nonparametric techniques 
(nearest-neighbor rule, Parzen window and metric classifier), soft computing techniques 
(MLP, RBF, SVM, GA, and fuzzy logic), unsupervised learning and clustering techniques and 
stochastic techniques (Bayesian classifier, HMM and EM ML). Since features from different 
sources are concatenated resulting in a vector with large dimensions, the problem of high 
dimensionality must be addressed. Features can also be used in an individual classifier, which 
outputs matching scores. In this scheme, rule based methods (majority voting, aggregation 
rules, Borda count) are in the mainstream while others such as statistical decision (Bayesian 
decision, DM), information based (expert system, fuzzy sets), and learning based (SVM, 
MLP, RBF) methods have also been proposed. Since in the case of decision level fusion, 
individual classifiers output a hard decision it is favorable to the independent sources while 
some literature exist that formulates decision level fusion for dependent sources as well. The 
techniques here include rule-based (majority voting, AND/OR, PROD/SUM, etc), machine 
learning and NN, linear classifier, statistical decision theory (ML, Bayesian, DM), fuzzy k-
means, logistic regression etc. Among them, the SVM is reported to have a better 
performance while the rule-based algorithms are the simplest and easiest to analyze.  
 
Preliminary theoretical analysis is developed here using decision level fusion to determine 
whether fusion of independent biometric sources could improve the overall identification 
performance. The performance is evaluated by two common indices: false acceptance rate 
(FAR) and false rejection rate (FRR) as well as the total error. When two independent 
biometric traits are used, the performance of the integrated system based on the AND/OR 
fusion rules is proved to give better performance in terms of total error than that of an 
individual biometrics under certain condition. FAR and FRR decreases with number of 
biometric sources. However, the FAR and FRR cannot be simultaneously reduced. To this 
extent, we also investigate the choice of majority voting rule for three independent source 
fusions in this report. Fusion of independent sources is found to produce improved 
performance than those of AND/OR and individual sources under certain conditions. 
Computer experiments are carried out to confirm the theoretical derivation and to illustrate 
that that fusion of independent sources is indeed possible and results in a better overall 
performance for biometric identification.  

 

Li, W., Huang, D., Leung, H. 2005. Fusion of Dependent and Independent Biometric 
Information Sources. DRDC Ottawa CR 2005-052. University of Calgary. 
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1. Introduction 
 
Information fusion is usually considered to be combining various sources of information, either to 
generate one representational format, or to reach a decision. The motivations for using 
information fusion include: (1) Utilizing multi-sensor fusion to increase the estimation accuracy 
of target-tracking [1-4]; (2) Utilizing complementary information to reduce the measurement 
errors [5-7]; (3) Utilizing multiple classifier fusion to increase the correct classification rates [5-
16]; (4) Reducing the cost of implementation possibly by using several cheap sensors rather than 
one expensive sensor. 
 
For the purpose of this study, we divide information fusion into two categories: dependent and 
independent source fusion. Fusion under both categories can be carried out at four different 
levels: raw data-level fusion [22-28], feature-level fusion [29-57], decision-level fusion [58-73], 
and multi-level integrated fusion [74-77]. Information fusion has a wide range of applications 
including (1) in defense systems for target detection, identification, surveillance, tracking, and 
threat assessment; (2) in geoscience and Geomatics for vehicle localization and navigation, 
segmentation and classification of remote sensing images; (3) in robotics and intelligent vehicles 
that require identification of environments and navigation; (4) in medicine where information 
fusion is used for diagnosis and modeling of the human body, classification of different tissues, 
and 3D imaging; (5) in industrial engineering.  
 
Multi-modal biometric system is a relatively new application of information fusion while 
individual biometrics has been used for a   fairly long time. For example, fingerprint has been 
widely used by police for person verification and identification. To increase the reliability, 
biometric fusion especially multi-modal biometric fusion has drawn a lot of attention recently. 
Common biometrics include fingerprint [17], face [18], hand geometry, finger geometry, iris, 
retina, signature, voice, gait, smell, keystroke, ECG, etc [20, 21]. While unimodal biometrics uses 
the fusion of multiple measurements, it can be considered as the fusion of dependent sources. In 
the case of multi-modal biometric fusion such as fingerprint and face, the information fusion is 
performed over independent sources since the two sources hardly have any correlation in the 
statistical sense. Although many unimodal and multi-modal biometric fusion techniques have 
been proposed in the literature, theoretical analysis of these fusion methods has not been 
addressed yet. In particular, very few published papers are found that have rigorous results on 
multi-modal biometrics [81-83].  
 
There are two main objectives of this report. First, an overview of information fusion techniques 
for dependent and independent sources, especially for the biometrics applications will be given. 
Various fusion techniques for dependent and independent sources are reviewed and briefly 
explained in the report. Second, we will address the question of whether independent biometric 
sources can be fused to provide a multi-modal biometric system with enhanced performance. The 
rest of this report is organized as follows. Section 2 introduces the architecture of information 
fusion. Dependent and independent sources based information fusion techniques are overviewed 
in Section 3 and Section 4 respectively. Section 5 presents the theoretical analysis of decision-
level fusion. Simulation results are presented in Section 6. Finally, conclusions are drawn in 
Section 7. 
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2.  The Structure of Information Fusion 
 

2.1 Comparison of fusion, integration, and classification 
 
Before discussing the structure of information fusion, we first compare the concepts of fusion, 
integration, and classification. Fusion and classification are compared in Figure 1. There are many 
kinds of information fusion applications such as multi-sensor fusion based target-tracking, 
navigation, image fusion, and classifier fusion. Classification can be divided into two categories: 
non-fusion based classifier and fusion based classifier. For classification problems, there is a 
common part for fusion and classification, i. e, classifier fusion. Classifier fusion is also called 
classifier combination by some researchers.  
 

 

Figure 1. Relationship between fusion and classification problems 

Fusion 
Classification Classifier   

fusion 

 

There is no consistent definition for multi-sensor integration in the literature. One definition is 
given in [4]. Multi-sensor fusion is one component of multi-sensor integration. Besides multi-
sensor fusion, multi-sensor integration also includes sensor registration, sensor modeling, and 
other functional components. 
 

2.2 Classification of information fusion techniques 
 
According to the relationship of the sources to be fused, information fusion can be divided into 
two categories: dependent sources based and independent sources based. Each category can be 
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further divided into four subcategories: raw sensor measurement level (sensor-level), feature-
level, decision-level, and multi-level integrated fusion as shown in Figures 2. 
 

 

Figure 2. Classification of information fusion techniques 

Information fusion

Dependent sources Independent sources 

Sensor-
level 

Feature-
level 

Decision-
level 

Sensor-
level 

Feature-
level 

Decision-
level 

 
The structure of information fusion is shown in Figure 3. In the raw data-level fusion, the raw 
data from multiple sensors are combined directly. For example, multiple remote sensing images 
are fused together to produce one single image by averaging the intensities of multiple images. 
Random measurement noise of fingerprint images can be reduced by combining the raw images. 
After raw data fusion, feature is then extracted from the fused data by feature extraction module 
(FEM), and finally processed by the matching module (MM) and decision module (DM). 
 
The second type is feature-based. There are two kinds of feature-based information fusion 
approaches. The first is feature concatenation. The feature vectors from multiple sensors are 
concatenated to form a new feature vector with a larger dimension. The concatenated feature 
vector is then input into the matching module and decision module. The second is called score-
level fusion or classifier fusion by some researchers. The individual feature vectors from each 
sensor are first input into their own feature matching modules (FMM). Each FMM provides a 
matching score indicating the proximity of the feature vector with the template vector. These 
scores are finally combined to assert the veracity of the claimed identity.  
 
The third type is decision-based. For each sensor, there is a decision making module that 
classifies its own extracted feature vector into two classes – accept or reject. The decision results 
(accept/reject) from multiple sensors can be fused finally by some methods such as the majority 
voting scheme. 
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Figure 3. Different levels of information fusion (FM: fusion module, MM: matching module, DM: decision 
module) 
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Figure 4. The multi-level integrated fusion structure 

 
Some researchers have proposed multi-level integrated schemes for information fusion. Three-
level integrated information fusion for classification problems is shown in Figure 4. One classifier 
utilizes the raw data from multiple sensors directly for classification. Another classifier utilizes 
the features from multiple sensors for classification. The outputs from raw data-level and feature-
level fusion are then input into the decision fusion module to make a final decision – accept or 
reject. 
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3. Information Fusion for Dependent Sources 
 

3.1 Raw data level 
 
Different applications require different levels of information fusion. Raw data-level fusion has 
been widely applied for multi-sensor fusion in target-tracking, remote sensing image fusion, 
medical image fusion, GPS/INS navigation, etc. Although raw data-level fusion can also applied 
to biometric fusion, it is a less popular method compared with feature-level and decision-level 
fusions. In this section, raw data-level fusion techniques for non-biometric applications are 
reviewed. Then biometric fusion techniques are introduced. 
 
Compared with biometric fusion, multi-sensor fusion has been employed for many applications 
including the most popular target-tracking application. Many multi-sensor fusion based target-
tracking methods have been elaborated in [3]. The most widely used one among them is the 
extended Kalman filter (EKF) method, which utilizes the raw measurements of multiple sensors 
to estimate the states of the target. The second important application of non-biometric fusion is 
navigation. A comprehensive review of various methods to fuse GPS and INS sensors was given 
in [22]. The fusion techniques were divided into three categories as: (1) Probabilistic model; (2) 
Least-squares techniques: EKF, weighted EKF, fuzzy EKF, adaptive EKF [24], and optimal 
theory; (3) Intelligent fusion: fuzzy logic [26], neural network [23], and genetic algorithms. An 
optimal nonlinear filtering to integrate GPS and INS sensors was utilized in [25], while a 
constrained unscented Kalman filter (UKF) was used in [27] to fuse GPS, INS, and digital map 
information for vehicle localization. An UKF method to register and fuse dissimilar sensors was 
proposed in [28] for cooperative driving application. Although multiple dissimilar sensors have 
been fused for tracking and navigation applications, the measurements are based on the same 
source and hence they can be considered as dependent sources based fusion. Some dynamic 
modeling methods, such as gait recognition, have been proposed for biometrics and hence EKF 
and UKF based methods can be used for biometric fusion.  
 
A biometric system is essentially a pattern-recognition system that recognizes a person based on a 
feature vector derived from specific physiological or behavior characteristic that the person 
possesses [13]. Biometric system can be operated in two modes: verification and identification. 
The commonly used biometrics include fingerprint, face, hand geometry, finger geometry, iris, 
voice, palmprint, DNA, ECG, signature, etc. The comparison of various biometric techniques is 
given in [13] and is presented in Table 1. Since, each biometric technique has its own limitations 
and advantages, multi-modal biometric fusion for improved performance is gaining popularity. A 
comprehensive overview of different multi-modal biometric fusion techniques is given in [12-16]. 
Raw data fusion can be used for unimodal biometric fusion. For example, multiple fingerprint 
images can be obtained from different sensors. Averaging of these fingerprint images can reduce 
the random measurement noise. 
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Table 1. Comparison of various biometric technologies [2] 

 

Legend: H – High M – Medium L – Low 

 

3.2 Feature-Level 
Feature-level fusion is the second category of information fusion. Based on different combination 
of features, we can divide it into two schemes as:  

1. Features from multiple sensors are concatenated to form a new feature vector with larger 
dimension. The concatenated feature vector is input into a feature matching module and 
decision module for decision making. 

2. Each feature vector from individual sensor is input into a feature matching module first. 
The outputs (i.e., matching scores) of the feature matching modules are fused through 
some methods. Feature-level fusion has been widely used for biometric fusion and target 
identification. We mainly discuss the biometric fusion problem here. 

 

3.2.1 Fusion at the feature extraction level 
 
The data obtained from each sensor and the same biometrics is used to compute a feature vector. 
Feature vectors from different sensors are concatenated together to form a single new feature 
vector. PCA and LCA may be required to reduce the dimension of the concatenated feature vector 
before input into a classifier. Target recognition and biometric verification and identification 
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problems can be considered as a classification problem. The following classifiers can be used 
based on the concatenated feature vector [29]:  
 

• Nonparametric techniques: 
o Nearest-Neighbor rule, k-Nearest-Neighbor rule, Parzen window, Metrics 

classifier 
• Soft computing techniques: 

o MLP, Recurrent NN, RBF, SVM, Probabilistic NN, Fuzzy NN, ANFIS, GA 
• Stochastic methods: 

o Bayesian classifier, Maximum likelihood, Component analysis, Expectation-
maximization, Hidden Markov Model 

• Non-metric based methods:  
o Decision trees, CART (classification and regression trees), Recognition with 

strings,  Grammatical methods, Rule-based methods 
• Unsupervised learning and clustering: 

o FCM, Unsupervised Bayesian classifier, Graph-theoretic methods. 
 
Compared to the classifier fusion level, concatenated feature scheme is less popular. We found 
only two references that employ this approach to multimodal biometric fusion for independent 
sources and no reference was found for dependent sources based biometrics fusion. 

3.2.2 Classifier fusion level 
Classifier fusion and decision fusion are two of the most popular schemes for pattern recognition 
problems such as target classification in military applications and biometric verification and 
identification. Dependent sources based classifier fusion techniques can be categorized as:   
 

• Rule based algorithms: 
o Majority voting [9, 31, 33] 
o Aggregation rules: minimum, maximum, averaging (simple averaging, optimal 

averaging [31], product [34], logistic rule [38], Borda count [9, 35] 
• Statistical decision based algorithms:  

o Bayesian estimation [4] 
o Dempster-Shafer (DS) evidential reasoning [9] 
o Non-parametric density estimation [9] 

• Information based algorithms: 
o Expert systems [34] 
o Combination by fuzzy integral [3] 
o Fuzzy sets and possibility theory [36] 

• Learning-based fusion: 
o SVM, feed forward neural network, MLP, RBF [9] 

• Others: 
o Linear regression [33] 
o Logistic transform [9, 37]. 
 

A Bayesian frame and DS theory was used in [31] to fuse Bayesian classifier, k-NN, and 
distance-based classifiers for handwriting recognition. Using some individual classifier, 
handwriting words were first recognized. Then the scores of the individual classifiers were 
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combined by the Bayesian and DS methods. Their experiments showed that the correct 
recognition rates could be improved by about 5% compared with the individual classifiers. A 
method for fusing multiple instances of biometric data to improve the performance of a personal 
verification system was proposed in [33]. The fusion problem was formulated in the framework of 
Bayesian estimation theory. Experimental studies on the M2VTS database [32] showed that a 
reduction in error rates is up to about 40%. Four combination strategies are [32]: 
 
Averaging 

∑
=

=
R

j
jj wP

R
wP

1
)(1)(ˆ xx                                                                                               (1) 

Max rule 

)(max)(ˆ
1 xx j

R
jj wPwP ==                                                                                            (2) 
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)(min)(ˆ
1 xx j

R
jj wPwP ==                                                                                             (3) 

Median rule 

)()(ˆ
1 xx j

R
jj wPmedianwP ==                                                                                        (4) 

Expert fusion strategies, including product, min, max, median and vote, and single expert scheme 
were compared in [34]. It was also shown that there exists a noise level boundary across which 
the relative performance of classifier combination rules changes. For expert fusion techniques 
affected by uniform noise, it was found that the minimum and product rules were best for noise 
less than a particular threshold. When the noise level was greater than the threshold, the 
performance of these two rules degraded and the sum rule became the best one.  
          
Borda count was used in [35] to fuse multiple algorithms for word recognition. A novel Borda 
count for fusion based on ranks and confidence was proposed. All experiments were performed 
on real-world handwritten words taken from the CEDAR benchmark database.  The word 
recognition results were the highest (91%) among published results for handwritten words (before 
2001). The proposed technique was shown in Figure 5. 
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Figure 5. The Borda count method for handwritten recognition [35]. 

 
A method to fuse multiple handwritten word classifiers based on data-dependent densities in a 
Choquet fuzzy integral was proposed in [36] that outperforms neural networks, Borda count,  
weighted Borda counts, and Sugeno fuzzy integral (about 2% improvement). The Choquet fuzzy 
integral of the function h with respect to a fuzzy measure g is defined as follows: 

                                                                                      (5) [ ,)()(
1
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When fuzzy integral is applied to classifier fusion, every classifier produces a confidence value 
for each class. These confidence values are represented by the function h. The overall confidence 
for that class is the fuzzy integral value. The class with the largest integral value can be taken as 
the final decision if a crisp decision is needed. 
 
Fingerprint matching algorithms are often based on different representations of the input 
fingerprints and hence complement each other. A logistic transform was used in [37] to integrate 
the output scores from three different fingerprint matching algorithms. Let  and  be 
the imposter and genuine distribution of the i

)( ii xI )( ii xG
th matcher, i = 1, 2. The logistic function was used to 

map the output scores of these two matching algorithms into a single score. The integration 
scheme is shown in Figure 6.  An experimental result is given in Figure 7.  
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Figure 6. Integration of two fingerprint matching algorithms using the logistic transform 

 
 

 

Figure 7. ROC curves of integration of algorithms A and B 

 
A logistic transform method similar to [37] was proposed in [38] to fuse optimal and capacitive 
sensors for fingerprint verification. The logistic transformation function is defined as 

)](exp[1
1
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The ROC curves of the fusion methods are shown in Figure 8. The performance of the fusion 
method is better than the performance of the single classifiers. 
 

 

Figure 8. ROC curves of the optical sensor and two fusion methods 

 
A multi-channel approach to fingerprint identification was proposed in [39]. This method was 
tested on 4000 images in the NIST4 database. A two-stage classifier method is proposed. This 
method uses K-nearest neighbor classifiers in the first stage and a set of neural network classifiers 
in the second stage to classify a feature vector into one of the five classes. The classification 
accuracy was improved from 94.8% to 96% for the five-class classification problem. 
 
Highest rank, Borda count, and linear regression were used in [40] for word recognition. The 
performance of different methods was compared in Table 2. The recognition rates are improved 
greatly by the fusion method. 
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Table 2. Performance comparison of character classifiers 

 

 

 
 

3.3 Decision-Level 
Very few published papers have been found for decision-level biometric fusion based on 
dependent sources. An optimal Neyman-Pearson rule [59] was used to combine multiple 
fingerprint matching algorithms at the decision-level. Experimental results conducted on a large 
fingerprint database (with about 2700 fingerprints) showed that the average matching 
performance increased by about 3%. They further showed that a combination of multiple 
impressions and multiple fingers improved the verification performance by more than 4% and 
5%, respectively. 
 

This method estimates the Parzen window density function based on n observations given by 
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Then the likelihood ratio )(/)(
10 w

d
w

d PPL XX=  is used to make the final decision for a two-

class problem: Decide  (person is an imposter) for high values of L; Decide  (person is 
genuine) for low values of L. 

0D 1D
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3.4 Multi-Level integrated fusion 
 
A few papers were published to discuss multi-level integrated sensor fusion. Multi-level fusion 
was utilized in [74] for target discrimination, while it was used in [75] to gradually update the 
performance of identity verification systems. A distributed data fusion structure was proposed in 
[76] for autonomous systems, while [77] used a two-level belief function model to detect anti-
personnel mines.  A multi-level data fusion for intelligent navigation of telerobot was discussed in 
[78].   
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4. Information Fusion for Independent Sources 
 

4.1 Raw data-level 
 
Raw data-level fusion is not suitable for multi-modal biometric fusion since the raw 
measurements from different biometrics such as face and fingerprint cannot be combined to form 
a new measurement.  

4.2 Feature-Level 

4.2.1 Fusion at the feature extraction level 
Compared with the score level fusion, concatenated feature schemes are less popular. Only a few 
papers were published about information fusion in the feature extraction level. A concatenated 
feature vector and Parzen classifier were used in [42] to fuse fingerprint and iris for improved 
identity verification.  A new feature vector ),,( 321 xxxx =  was formulated based on the feature 
vectors  (fingerprint),  (iris), and  (iris color). The classification rates of the fusion 
method are compared with single classifiers in Figure 9. 

1x 2x 3x

 

 

Figure 9. Comparison of fusion method and single classifiers 

 
In [43], a concatenated feature scheme was proposed on fusing speech and face for person 
verification. The experimental results showed that for high SNRs, correct classification rates of 
the fusion methods were higher than that of the individual classifiers. However, for low SNRs, the 
correct classification rates of the fusion methods were worse than the best individual classifier. 
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4.2.2 Classifier fusion level 
Independent sources based classifier fusion techniques can be classified as follows: 

• Rule based algorithms: 
o Majority voting [51, 52, 53] 
o Aggregation rules: sum [50], minimum, maximum, averaging (simple averaging, 

weighted averaging [49, 52], Borda count [53], Mixed group ranks (MGR) [55] 
• Statistical decision based algorithms:  

o Probabilistic fusion [52] 
o Bayesian estimation [50, 52, 53] 
o Dempster-Shafer evidential reasoning [52, 57] 
o Adaptive decision [52] 

• Information based algorithms: 
o Behavior-knowledge space (BKS) [52] 
o Combination by fuzzy integral [53] 
o Fuzzy sets and possibility theory [53] 

• Learning-based fusion: 
o SVM, Feedforward neural network, MLP, RBF [50, 54] 

• Others: 
o Combination by Zimmermann’s compensatory operator [53] 
o Score transformation 
o Reduced multivariate polynomial model for multimodal biometrics and 

classification fusion, [49, 56] 
 

Face and speech was combined in [44] for person identification. The classifiers used include 
SVM, Bayesian classifier, decision tree, and MLP. Bayesian method is used to fuse the multiple 
classifiers. The ROC curves of the Bayesian fusion and single modalities are compared in Figure 
10. The performance of identity verification is improved greatly by Bayesian fusion. 

16 DRDC Ottawa CR 2005-052 
 
  
 



  

 

Figure 10. ROC curves of Bayesian fusion and single modalities 

 

 

Figure 11. ROC curves of fusion, face, and fingerprint 
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Bayesian statistics fusion was used in [45] for multi-modal person authentication. HyperBF 
networks were used in [46] to fuse audio and video features for person identification. Faces and 
fingerprints were integrated in [47] for person identification. Statistical estimation method was 
used for fusion. The ROCs of the fusion method, face, and fingerprint are shown in Figure 11. For 
low acceptance rates, the performance of the fusion method is improved effectively than face-only 
based and fingerprint-only based methods. 
 
A multi-modal biometric system was introduced in [48], which integrates face recognition, 
fingerprint verification, and speaker verification for person identification. This system takes 
advantage of the capabilities of each individual biometrics. It can be used to overcome some of 
the limitations of a single biometrics. Preliminary experimental results demonstrate that the 
identity established by such an integrated system is much more reliable than the identity 
established by a single face recognition system, fingerprint verification system, or speaker 
verification system. 
 
A reduced multivariate polynomial model for classifier fusion was proposed in [49]. This method 
overcomes the shortcomings related to complexity of conventional multivariate polynomial model 
for high-dimensional problems. The authors applied the new model to fuse fingerprint and voice 
data for person identification. The second-order (RM2) and third-order (RM3) multivariate 
polynomial models are compared with unimodal biometric systems in Figure 12. The 
identification performance can be improved greatly by the fusion methods for low acceptance rate 
cases. 
 
SVM and sum rule for fusion of fingerprint and signature were proposed in [50]. The output 
scores of single classifiers are used as the input of the SVM network. The output of the SVM is 
the final decision score. Before testing, the SVM network must be trained by some training data 
sets. 
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Figure 12. ROC curves of second-order and third-order multivariate polynomial model fusion methods 

 

 

Figure 13. ROC curves of the sum rule based fusion method 
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Figure 14. ROC curves of the SVM method 

 

Reference [52] proposed decision templates for multiple classifier fusion, and compared it with 
C1: MAJ, majority voting. C2: NB, Naïve Bayesian; BKS, Behavior knowledge space method. 
CC1: MAX, maximum aggregation rule; MIN, minimum aggregation rule; AVR, average 
aggregation rule; PRO, product aggregation rule. CC2: PPR, probabilistic product; FI, fuzzy 
integral. CI2: DS, Dempster-Shafer, LDC, Linear discriminant classifier on the intermediate-
output space; QDC, Quadratic discriminant classifier; LOG, logistic classifier; FSH, Fisher linear 
classifier. DT: decision templates with different models. The comparison is shown in Table 8 in 
[52]. 
 
Eleven classifier fusion methods were compared in [53]. The comparison included majority rule, 
averaging, Borda count, Bayesian combination, weighted averaging, combination by fuzzy 
integral, combination by fuzzy integral with data-dependent densities, combination by weighted 
averaging with data-dependent weights, combination by the BADD defuzzification strategy, 
combination by Zimmermann’s compensatory operator and optimizing the fuzzy measure.  
 
Hyperbolic function network, forward neural network, and SVM were used in [54] for classifier 
fusion of fingerprint and face. They treated the problem of combining fingerprint and speech 
biometrics decisions as a classifier fusion problem. The output scores of individual classifiers are 
used as the input of the neural networks, and the output scores of the NN are the final decision 
scores. The different NN fusion methods can improve the identification performance effectively 
as shown in Figure 15. The reduced multivariate polynomial model is also used in [56] for fusion 
of fingerprint and speaker. 
 

A mixed group rank (MGR) method for classifier fusion was proposed in [55]. A unifying 
framework was proposed in this paper for combination rules of rank-based classifiers. Borda 
count, logistic regression, and highest rank combination are just special cases of this framework. 
MGR improves the correct classification rates on all tested data sets as shown in Figure 16. 
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Figure 15. ROCs of different fusion methods 

 
 

Figure 16. The combination of three classifiers by MGR consistently demonstrates improved performance on 
different data sets 
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4.3 Decision-Level 
 

Decision-level fusion can be considered as a pattern classification problem such as biometrics 
fusion and target recognition. The independent sources based decision-level fusion schemes 
include: 
 

• Rule based:  
o Majority voting [72], AND/OR and PROD/SUM rules [61, 73] 

• Machine learning and neural network [58, 73]:  
o Expert [65], FFNN, SVM, MLP [60], fuzzy set [68], particle swarm [70, 71] 

• Classifier based:  
o Linear classifier, Quadratic classifier, k-NN based classifiers, decision trees [62, 

64, 66] 
• Statistical decision theory [58, 67]:  

o Maximum a posterior, maximum likelihood, minmax, Bayesian [68, 70, 71], 
Dempster-Shafer (DS) evidence theory [68] 

• Clustering for decision level fusion [69]:  
o Fuzzy k-means, fuzzy vector quantization, median radial basis function 

• Others:  
o Logistic regression [58]. 

 
SVM used in [60] for decision-level multi-modal biometric fusion. Face, fingerprint and signature 
were used as the three biometric signals. Fusion of face, fingerprint, and signature was considered 
as a pattern classification problem in this paper, which was implemented through SVM. The SVM 
classification problem can be changed into a quadratic programming problem as shown in the 
following equation 
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The classification scores of unimodal biometrics are input into the SVM network, and the outputs 
of the SVM network are the final fused score. A training data set is first formulated and used to 
train the SVM network. The testing data set is then used to test the performance of the SVM 
fusion method. The ROC curves of fusing different sets of biometrics by SVM are shown in 
Figure 17. When the false acceptance rate is lower than 20%, the fused results are consistently 
better than that of the unimodal biometrics techniques. 
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Figure 17. ROC curves of SVM based multimodal biometric fusion 

 
Voting was used in [61] to increase the decision reliability. In majority voting, a consensus on the 
decision is reached by having a majority of the classifiers declaring the same decision. Decision-
level fusion was considered as a classifier problem in [62]. It used k-NN, decision trees, and 
logistic regression in a multi-modal identification problem. An adaptive model was proposed for 
person identification by combining speech and image information [63]. The flowchart of the 
integration process is shown in Figure 18. The performance of the integration method is compared 
with face recognition model and speck recognition model. The average recognition rate of the 
integration method is about 91.6% while the recognition rates for the voice and face models are 
about 85% and 79.29%, respectively.  

 

Figure 18. Flowchart of the integration process [63] 
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Table 3. Performance of the speaker recognition, face recognition and integration models 

 

 

 

MLP was used in [64] to implement decision fusion using face, voice, and signature. The 
classification scores of three classifiers for face, voice, and signature, are respectively used as the 
input of the MLP neural network, and the outputs of the MLP are the fused decision scores. 
Before testing, the MLP network must be trained by some training data sets. Without fusion, the 
recognition rates for voice, face, and signature are 89%, 99.5%, and 93%, respectively. The 
recognition rate with fusion is 100%.  
 
Speech and face were fused in [65] by expert systems. SVM and vote rules were used for expert 
fusion. The authors investigated the behavior knowledge space and decision templates methods of 
classifier fusion in the context of multi-modal personal identity verification. The two fusion rules 
have been compared to simple combination rules, namely sum and vote, which do not require any 
training. Through extensive experiments on the XM2VTS database, they found that all these four 
combination methods yielded performance improvement. But no strong evidence had been found 
to support the hypothesis that trainable fusion strategies could offer better performance than 
simple rules. 
 
Both global and local decisions for person identification based on multivariate polynomial model 
was exploited in [67]. The general multivariate polynomial model can be expressed as 

                   .                                                                             (9) ln
l
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The computation complexity of the model represented in (9) is very high for high dimensional 
data sets. So a reduced multivariate polynomial model was proposed for multi-biometric fusion. 
This new model was defined as 
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Experiments showed that the fusion methods can improve the performance of person 
identification effectively (as shown in Figure 19). 
 

 

Figure 19. ROC curves of the fusion methods 

 

An overview of different decision level fusion techniques including Bayesian estimation, DS, and 
fuzzy sets was given in [68]. Clustering was used in [69] for multi-modal decision fusion. Person 
authentication results coming from several modalities are combined by using fuzzy k-means 
(FKM), fuzzy vector quantization (FVQ), and median radial basis function (MRBF) network. 
Simulations showed that MRBF had better performance. Both [70] and [71] proposed a particle 
swarm optimization method to search for the best Bayesian decision rule which was used for 
fusing face, voice, and hand. The flowchart of this method is shown in Figure 20. 
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Particle swarm 
optimization  

Bayesian decision

fusion 

Optimal fusion rules
Accept/Reject

Voice Hand Face 

Single modal decisions 

Figure 20. Flowchart of particle swarm optimization and Bayesian fusion 

 

Face and ECG were fused in [72] for person identification. Mono-modal biometric identification 
systems exhibit performance that may not be adequate for many security applications. Face and 
fingerprint modalities dominate the biometric verification / identification field. However, both 
face and fingerprint can be compromised using counterfeit credentials. Previous research has 
demonstrated the use of the electrocardiogram (ECG) as a novel biometric. This paper explored 
the fusion of a traditional face recognition technique with ECG. System performance with multi-
modality fusion can be superior to reliance on a single biometric trait. 
 

A multi-modal approach for speaker verification was described in [73]. The system consists of 
two classifiers, one using visual features and the other using acoustic features. A lip tracker is 
used to extract visual information from the speaking face which provides shape and intensity 
features. They used a weighted summation method to integrate the scores of multiple classifiers. 
The performance of the integrated system outperformed each sub-system and reduced the false 
acceptance rate of the acoustic sub-system from 2.3% to 0.5%.  
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5. Theoretical Analysis for Decision Level Fusion 
 

Decision level fusion of independent sources is considered here. For instance, two independent 
sources are face and voice. Fusion scheme using these two sources is denoted by A. Verification 
system based only on face is denoted by , while on voice by . If  provides 95% correct 
classification rate (CCR) and  provides only 80% CCR individually, then it is interesting to 
find if A can provide CCR higher than 95%, if so, what is any condition or what kind of algorithm 
can reach this confidence level. If 

1A A A
A

2 1

2

Γ  is an algorithm, then the task is to find which acts on 
independent sources so that the output is maximized. This can be written as  

Γ

                    .                                                                                  (11)                  ),(maxˆ
21 AAΓ=Γ

Ω∈Γ

At first, we give two important performance indices in biometrics authentication system. The first 
is false acceptance rate denoted FAR hereafter which means wrongly identifying an imposter to 
be an enrollee. The other index is false rejection rate denoted by FRR which means wrongly 
identifying an enrollee as an imposter.  

 dXwXpdXwXpwwPtFAR RR )(1)()ˆ()( 0001 01 ∫∫ −=== ,                            (12) 

                  dXwXpwwPtFRR R )()ˆ()( 110 0∫==                                                               (13) 

where  denotes the genuine user while denotes the imposter.  and  are two exclusive 

set in the real axis. Both FAR and FRR are desirable to be as low as possible in authentication 

system. In some systems, a low value for FAR is emphasized. Such systems include bank 

authentication system, military access control unit, etc. For any biometrics authentication system, 

whatever classifier takes, there exists a great risk of error. From the viewpoint of Bayesian 

decision theory, this is represented by the following equations for a two class problem, 

1w 0w 0R 1R

                   )()()( tFARCtFRRCtE ar ×+×= ,                                                              (14) 

                                                   (15) NifortFARCtFRRCtE i
ii

ai
ii
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where, N is the total sensor number, denotes the loss function pertinent to the false rejection, 
and  denotes the loss function for the false acceptance. For simplicity, we assume that 

 and .  
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5.1 Using AND rule 

First we analyze the performance of fusing two biometric signals. In this case, the relationships of 
FAR and FRR between two individual classifiers and the integrated classifier are represented by 
the following formulas, respectively, 
 

 ,                                                                         (16)                   

.                                      (17) 

1 2
1( ) ( ) ( )FAR t FAR t FAR t= × 2

2121

1 2

1

)()()()()( 2121 tFRRtFRRtFRRtFRRtFRR ×−+=

Remark 1 Using an example to explain (16) and (17) clearly, we assume that 
and . If there are 10000 imposters presented to , then according to 01.0=FAR 05.0=FAR 1B

FAR  there will be 100 imposters passed by . Because of the AND rule, only five imposters of 
100 imposters can pass  by

1B

2B 2FAR . Thus the false acceptance rate of the integrated system is 
calculated by       

         0005.0
10000

5
==

imposterofNumber
acceptfalseofNumber  

which can be calculated from (16) as 0005.005.0*01.0)( ==tFAR . 

In a similar way, we assume that and . Then it 
follows by the AND rule that if 1100 genuine users present, as a result there are 950 users passed 
by the integrated system which gives the false rejection rate  

091.01100/1001 ==FRR 05.01000/502 ==FRR

               136.0
1100

9501100
=

−
=

genuineofNumber
rejectionsfalseofNumberFRR . 

It is calculated by (17), i.e., .136.005.0091.005.0091.0)( =×−+=tFRR  

Lemma 1 If using AND rule on the independent sources, then for fixed operating point of , the 
integrated system can improve the performance over the individual classifiers under the following 
condition in the sense of the total error.  

2B
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where 
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However, the integrated system will increases FRR while decreases the FAR. 

Proof: It is enough to prove that )()( ii tEtE ≤ . This leads to the following equations by 
substituting (16) and (17) into ( )E t

B
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321 ++=
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From (21) and (22), it can be easily seen that to get improved performance, a proper relationship 
should be developed between the operating points of two systems. In fact, at some operating 
points, (21) and (22) will not hold, which indicates that the performance cannot be improved for 
the AND rule based fusion. 

If the classifier operates at some fixed  we can derive conditions for 
from (21) and (22). That is, 

2B ))(),(( 2
2

2
2 tFARtFAR

1

                 .                                                 (23) ))(1()()(1 1
1

21
1

1
1

1 tFARktFRRtFARk −≤≤−

From (16), it is straightforward that and . This means the 
integrated system decreases FAR. But from (17), and  
hold. Thus, the FRR increases.   

)()( 1
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2 tFARtFAR <

)()( 1tFRRtFRR > )()( 2tFRRtFRR >

Equations (16) and (17) can be easily generalized to the cased with more than two biometrics. For 
N = 3, we have, 
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5.2 Using OR rule 

For the OR rule, similar to the AND rule, we can easily derive the following relationships of FAR 
and FRR between the individual classifiers and the integrated classifier.  
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Therefore, without any further proof, we can state the following conclusion similar to Lemma 1.  

Lemma2 If using OR rule on the independent sources, then for fixed operating point of , the 
integrated system can improve the performance over the individual classifiers under the following 
condition in the sense of total error.  

2B
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However, the integrated system will increases FAR while decreases the FRR. 

Equations (26) and (27) can be generalized for the cases with more biometrics. For N = 3, we 
have 
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5.3 Using majority voting rule 

Assume that there are N independent sources. For the i  source, an individual classifier  exists 

with false accept rate and false rejection rate

th
iB

{ })(),( i
i

i
i tFRRtFAR . If at least 

2
1+N  classifiers 

wrongly accept an imposter simultaneously, then by the majority voting rule, the integrated 
system will accept the imposter. Since each individual classifier is independent, the joint 
probability of the classifiers is represented by 
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The probability of at least 
2

1+N  classifiers wrongly identifying an imposter is then calculated by 

 (32) 

For N = 3, we have, 
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Similarly, for N = 3, we have 
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If the integrated system , then we have )()( 1
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The following equation can be derived from (35),  
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 If the FRR of the integrated system is smaller than that of the individual classifier, the 

following conditions should be satisfied. 
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5.4 Soft decision level fusion 

For simplicity, we discuss integration of two biometric systems denoted by  and1Ψ 2Ψ , 
respectively. The integrated system is denoted by Ψ . The outputs by individual systems 1Ψ  and 

 are called scores, which stand for the probability of claimant to be a genuine or an imposter. 
Then for any fusion strategies, an error is expressed as (14) and (15). If we assume 
that , then it is easily known it is sufficient to prove that 

. For a two-sensor fusion, if Bayesian rule is chosen, then this means that 

2Ψ
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where { }),(),(),( 12102121 wXXpCwXXpCXXR ar ≥= . Since 1Ψ  and 2Ψ  are independent, we 
have  
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It can be easily seen from (44) that  and . Thus the two-
sensor configuration cannot improve the false acceptance rate by the Bayesian decision rule.  

)()( 1
1 tFARtFAR ≥ )()( 2

2 tFARtFAR ≥

From the definition of the false rejection rate and with the help of the independence of the 
individual classifiers, we have 
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From (45), it is obvious that  and .  Thus the false rejection 
rate of the integrated system is reduced compared to individual sub-classifiers.  

)()( 1
1 tFRRtFRR ≤ )()( 2

2 tFRRtFRR ≥

The exact way as to how the integrated system performs better in terms of the smaller total error 
is described in [81]. The Bayesian decision rule is adopted to prove that the error is minimized. 
That is, assume that  
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which is equivalent to  

                     
)(
)(

)(
)(

111

011

122

022

wXp
wXp

wXpC
wXpC

a

r ≥ .                                                                         (48) 

It was claimed in [81] that from the Bayesian rule, the total error will be smaller than the other 
rules. This claim needs further theoretical proof.  
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6. Simulation Results 
 

6.1 AND rule 
 
The first experiment shows the performance of the AND rule for fusing two biometrics. Figure 
21(a) compares the fused result with that of the individual biometrics. In Figure 21(b), region with 
fusion threshold “1” represents the region in which performance of the AND rule based fusion is 
better than all individual classifiers. The region with “-1” represents the area where the fused 
result is worse than the best individual biometrics. FRR and FAR vary from 0.05 (N = 0) to 0.0 (N 
= 30).  We can observe that the fused result is better than all individual biometrics only in some 
regions for the AND rule for fusing two biometrics. 
 

          (a) 

      (b) 

Figure 21. AND rule for fusing two biometrics 
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The second experiment shows the performance of the AND rule for fusing three biometrics. 
Figure 22(a) compares the fused result with that of the individual biometrics. In Figure 22(b), 
region with fusion threshold “1” represents the region in which performance of the AND rule 
based fusion is better than all individual classifiers. The region with “-1” represents the area 
where the fused result is worse than the best individual biometrics. The FRR and FAR of three 
biometrics were changed as follows: FAR1: [0, 0.05]; FRR1: [0, 0.05]; FAR2: [0, 0.04]; FRR2: 
[0, 0.04]; FAR3: [0, 0.03]; FRR3: [0, 0.03].  Even in this case, we can notice that the fused result 
is better than all the three individual biometrics only in some areas. 

          (a) 

      (b) 

Figure 22. AND rule for fusing three biometrics 
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6.2 OR rule 
The third experiment shows the performance of the OR rule for fusing two biometric signals. 
Figure 23(a) compares the fused result with that of the individual biometrics. In Figure 23(b), 
region with fusion threshold “1” represents the region in which performance of the OR rule based 
fusion is better than all individual classifiers. The region with “-1” represents the area where the 
fused result is worse than the best individual biometrics. FRR and FAR vary from 0.05 (N = 0) to 
0.0 (N = 30).  We can observe that the fused result is better than all individual biometrics only in 
some regions for the OR rule for fusing two biometrics.  

          (a) 

      (b) 

Figure 23. OR rule for fusing two biometrics 
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The fourth experiment shows the performance of the OR rule for fusing three biometric signals. 
FRRs and FARs of the three biometrics were changed as follows: FAR1: [0, 0.05]; FRR1: [0, 
0.05]; FAR2: [0, 0.04]; FRR2: [0, 0.04]; FAR3: [0, 0.03]; FRR3: [0, 0.03].  We can see that the 
fused result is better than all individual biometrics only in some areas for the OR rule with three 
biometrics. 
 

         (a) 

      (b) 

Figure 24. OR rule for fusing three biometrics 
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6.3 Majority voting rule 
 

The fifth experiment shows the performance of the Majority Voting Rule for fusing three 
biometric signals. The FRRs and FARs of the three biometrics were changed as follows: FAR1: 
[0, 0.05]; FRR1: [0, 0.05]; FAR2: [0, 0.04]; FRR2: [0, 0.04]; FAR3: [0, 0.03]; FRR3: [0, 0.03]. 
The comparison results are shown in Fig. 25. It is apparent from the figure that the fused result is 
better than all individual biometrics over the entire region. On the other hand, the AND and OR 
based fusion were better over only a portion of this entire region. 
 

         (a) 

      (b) 

Figure 25. Majority Voting rule for fusing three biometrics 
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6.4 Soft decision-level fusion 
 
The sixth experiment shows the FRR and FAR of the Bayesian soft decision-level fusion of two 
biometrics. Figure 26(a) shows that the FRR of the integrated system is reduced compared to the 
individual classifiers while the FAR of the integrated system is increased as shown in Figure 
26(b). 
  

        (a) 

      (b) 

Figure 26. Bayesian soft decision-level fusion of two biometrics 
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7. Conclusion 
 
This report reviewed the basic structure for information fusion including raw data level fusion, 
feature level fusion (feature concatenation and classifier fusion), decision level fusion, and multi-
level integrated fusion for dependent and independent sources. The raw data level fusion is 
mainly applied to the fields of multi-sensor fusion in the literature for target-tracking, navigation, 
and image fusion. Feature level and decision level fusions are more popular for unimodal 
biometric fusion (dependent sources) and some are applied to multi-modal biometric system 
(independent sources). Different techniques for biometric fusion at these levels were reviewed 
and briefly explained in this report. 
 
In the latter part of this report, some preliminary performance analyses on fusion of independent 
sources were presented. It was shown that under certain conditions, fusion of independent sources 
at the decision level can in fact improve the performance from the total error point of view. 
Simple rules such as AND, OR and majority rules were employed. Both theoretical and simulated 
results were obtained. It was also shown that for fusing two biometric traits the FAR and FRR 
cannot be simultaneously decreased. Although it is desirable to decrease both FAR and FRR, this 
might not be a big problem since for many applications, either FAR or FRR is of particular 
emphasis. 
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In this report, an overview of information fusion techniques for dependent and independent sources, specifically for 
biometric applications, is provided. The information fusion architecture is presented for both dependent and 
independent sources addressing in detail the various fusion techniques at four different levels namely: raw data or 
signal level, feature level, decision level and multi-level integrated fusion. Furthermore, the report addresses the 
question of whether independent biometric sources can be fused to provide multi-modal biometric system with 
enhanced performance. The report shows that even when the sources are independent, the performance of a multi-
modal biometric system can be better than that of a biometric system based on single source. The performance is 
measured in terms of total false accept rate (FAR) and false rejection rate (FRR). The conditions for achieving an 
improved performance for the decision level fusion using AND, OR and majority voting are derived theoretically and 
confirmed through computer simulations. 
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